IPST Technical Paper Series Number 852 Scale-Dependent Bounds on Effective Elastoplastic Response of Random Composites
نویسنده
چکیده
We consider the mechanical response of random, heterogeneous materials, where each phase is elastic-plastic with an associated flow rule, and the microstnrcture’s statistics is homogeneous and ergodic. Under proportional monotonic loading, the effective (in the macroscopic sense, or overall) elastoplastic response is shown to be bounded from above and below by those obtained, respectively, from displacement and traction boundary conditions applied to finite size domains (square shaped windows). A scale dependent hierarchy of these bounds is obtained by extending the methods used earlier for the elastic moduli estimation: the larger the scale relative to the heterogeneity, the closer are the bounds. A fiber reinforced metal matrix composite is employed to illustrate the theoretical results. Its constitutive response and plastic strain field are investigated by computational micromechanics for different window sizes under both types of boundary conditions; it is found here that the displacement conditions result in denser and more uniformly distributed slip band patterns, while the traction conditions lead to more localized fields. We also investigate a mixed boundary condition, under which the mechanical response of composite is found to fall between those under displacement and traction controlled boundary conditions.
منابع مشابه
Damage and Impact Simulation of Randomly Oriented, Chopped Fiber Composites for Automotive Applications
Damage constitutive models based on micromechanical formulation and combination of micromechanical and macromechanical effects are presented to predict progressive damage in aligned and random fiber reinforced composites. To estimate the overall elastoplastic damage responses, an effective yield criterion is derived based on the ensemble-volume averaging process and the first-order effects of e...
متن کاملA Micromechanical Constitutive Model of Progressive Crushing in Random Carbon Fiber Polymer Matrix Composites
A micromechanical damage constitutive model is presented to predict the overall elastoplastic behavior and damage evolution in random carbon fiber polymer matrix composites (RFPCs). To estimate the overall elastoplastic damage responses, an effective yield criterion is derived based on the ensemble-volume averaging process and first-order effects of eigenstrains due to the existence of spheroid...
متن کاملIPST Technical Paper Series Number 618 Laser Doppler Velocimetry for Flow Measurements in Pulp and Paper Research
متن کامل
Modeling of progressive damage in aligned and randomly oriented discontinuous fiber polymer matrix composites
Damage constitutive models based on micromechanical formulation and a combination of micromechanical and macromechanical damage criterions are presented to predict progressive damage in aligned and random fiber-reinforced composites. Progressive interfacial fiber debonding models are considered in accordance with a statistical function to describe the varying probability of fiber debonding. Bas...
متن کاملFEM Implementation of the Coupled Elastoplastic/Damage Model: Failure Prediction of Fiber Reinforced Polymers (FRPs) Composites
The coupled damage/plasticity model for meso-level which is ply-level in case of Uni-Directional (UD) Fiber Reinforced Polymers (FRPs) is implemented. The mathematical formulations, particularly the plasticity part, are discussed in a comprehensive manner. The plastic potential is defined in effective stress space and the damage evolution is based on the theory of irreversible thermodynamics. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000